DFA Minimization: The Idea

"Minimal"?
Minimal number of states.
"Unique"?
Unique up to renaming of states.
I.e., has same shape. Isomorphic.

Will show algorithm \& detailed example. Will outline why algorithm is correct.

DFA Minimization: Algorithm Idea

Equate \& collapse states having same behavior.
Build equivalence relation on states:

$$
\mathrm{p} \equiv \mathrm{q} \quad \leftrightarrow \quad\left(\forall \mathrm{z} \in \Sigma^{*}, \hat{\delta}(\mathrm{p}, \mathrm{z}) \in \mathrm{F} \leftrightarrow \hat{\delta}(\mathrm{q}, \mathrm{z}) \in \mathrm{F}\right)
$$

I.e., iff for every string z, one of the following is true:

DFA Minimization: Algorithm

Build table to compare each unordered pair of distinct states p,q.

Each table entry has

- a "mark" as to whether p \& q are known to be not equivalent, and
- a list of entries, recording dependences: "If this entry is later marked, also mark these."

DFA Minimization: Algorithm

1. Initialize all entries as unmarked \& with no dependences.
2. Mark all pairs of a final \& nonfinal state.
3. For each unmarked pair p, q \& input symbol a:
4. Let $r=\delta(p, a), s=\delta(q, a)$.
5. If (r, s) unmarked, add (p, q) to (r, s) 's dependences,
6. Otherwise mark (p, q), and recursively mark all dependences of newly-marked entries.
7. Coalesce unmarked pairs of states.
8. Delete inaccessible states.

DFA Minimization: Example

1. Initialize table entries: Unmarked, empty list

DFA Minimization: Example

2. Mark pairs of final \& nonfinal states

DFA Minimization: Example

3. For each unmarked pair \& symbol, ...

DFA Minimization: Example

3. For each unmarked pair \& symbol, ...

DFA Minimization: Example

3. For each unmarked pair \& symbol, ...

DFA Minimization: Example

3. For each unmarked pair \& symbol, ...

DFA Minimization: Example

3. For each unmarked pair \& symbol, ...

DFA Minimization: Example

3. For each unmarked pair \& symbol, ...

DFA Minimization: Example

3. For each unmarked pair \& symbol, ...

DFA Minimization: Example

3. For each unmarked pair \& symbol, ...

DFA Minimization: Example

4. Coalesce unmarked pairs of states.
$a \equiv e$
$\mathrm{b} \equiv \mathrm{h}$
$d \equiv f$

DFA Minimization: Example

5. Delete unreachable states.

DFA Minimization: Notes

Order of selecting state pairs was arbitrary.

- All orders give same ultimate result.
- But, may record more or fewer dependences.
- Choosing states by working backwards from known non-equivalent states produces fewest dependences.
Can delete unreachable states initially, instead.
This algorithm: $\mathrm{O}\left(\mathrm{n}^{2}\right)$ time; Huffman (1954), Moore (1956).
- Constant work per entry: initial mark test \& possibly later chasing of its dependences.
- More efficient algorithms exist, e.g., Hopcroft (1971). 17

DFA Minimization: Correctness

Why is new DFA no larger than old DFA?
Only removes states, never introduces new states.
Obvious.

Why is new DFA equivalent to old DFA?
Only identify states that provably have same behavior.
Could prove $x \in L(M) \leftrightarrow x \in L\left(M^{\prime}\right)$ by inductions on derivations.

What About NFA Minimization?

This algorithm doesn't find a unique minimal NFA.

Is there a (not necessarily unique) minimal
NFA?
?
Of course.

NFA Minimization

In general, minimal NFA not unique!

Example NFAs for $\mathbf{0}^{+}$:

Both minimal, but not isomorphic.

